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Abstract 

Segmentation in general and segmentation of multi-spectral images in particular require 

advances analysis and computational methodologies. In this paper we introduce a new state of 

the art method for segmentation of multi-spectral images. The proposed methodology is 

based on a multi-scale geometric transformation called the Beamlet Transform. The method is 

applicable for both mono-spectral and multi-spectral images where each pixel has its 

corresponding spectral profile vector. The proposed segmentation method is especially 

effective when the underlying image consist of relatively large segment with smooth 

boundaries, in this case it perform exceptional well even in extremely low SNR. The method 

is unsupervised and assume no prior knowledge of the image characteristics or features.  

In order to validate the efficiency of our method we used the known Lark algorithm as a 

benchmark for segmentation of multi-spectral images and show that our new method out-

performs the Lark algorithm. 

 

1. Introduction and background 

The segmentation problem involves the decomposition of an image into a set of disjoint 

segments or blocks where each block is homogeneous with respect to its interior and 

heterogeneous with respect to its neighbor segments. In this work we present a state of the art 

method for  the segmentation of digital images from different dimensions and kinds that is 

based on the principles of multi-scale geometric analysis. In order to understand the 

segmentation method and its building blocks we will first review the related geometrical 

framework and transformation and in particular Beamlets and the Beamlet Transform.  

 

1.1 Beamlets and the Beamlet Transform 



Beamlets were first introduced by Donoho and Huo [Donoho and Huo 2001]. The Beamlet 

Transform is actually an extention of the known Radon Transform [Dyn 2000] over a multi-

scale set of line-segments. The Discrete Radon Transform computes a set of line integral over 

a set of global lines over uniformly sampled sets of orientations and locations with respect to 

the image [See Figure 1] 

  
  
  
  
  
  
  
  
  
  
  
  
  

Figure 1 -  Uniform sampling of orientations and locations of lines and their intersections 
with the image  

  
The 2-dimensional Beamlet Transform applies the standard Radon Transform over a hierarchical 
 multi-scale structure of regions in the image known as the quad tree split of the image. The first 
level of the quad tree consist of the entire image, the second level contains the 4 quadrants of the 
image, the 3rd level contains the division of the image into 16 disjoint squares and so on as shown 
in Figure 2. The finest level of the quad tree can contain the individual image pixel or larger 
squares, as desired. The Beamlet set consist of line segments that connects points on the 
boundaries of the dyadic squares in the quad tree.  

  

  
Figure 2 – The quad tree spilt of an image and corresponding bamlets.  



It can be easily shown that if we connect every disjoint pair of boundary grid points for every 

dyadic square in the quad tree defined over  an n by n image we get a total of  )(log 2nno ⋅  line 

segment compare to the set of )( 4no  segments connecting every pair of grid points in the digital 

image. Despite of being compact, the beamlet set make it possible to approximate any line 

segment in the image using a connected chain of at most )log(4 n⋅  beamlets within a Hausdorff  

 

1.2 Approximating a digital image using the standard quad tree 

A quad tree approximation of a digital image is obtained by a recursive process where in each 

stage there are two possible decision to be made, 1 - approximating a given dyadic square as a 

uniform region with the average corresponding pixels value and stop, or 2 -  apply a quad split 

and continue with the recursion on each one of the resulting squares. At the end of the process, a 

piece-wise constant approximation of the image is obtained where the constant regions are 

squares at different sizes as illustrated in Figure 3.  

  

Figure 3 – A quad tree split of an image boundary. 
 

1.3 Approximation an image using a beamlet decorated quad tree 

Same as the standard quad tree approximation, the beamlet decorated one [Donoho and Hou 

1999] is the result of a recursive process applied to the dyadic squares of an image but in addition 

to the 2 choices for the decision in each stage, a third possible decision is applying a line split 

using the optimal line choice over the given square and then stop as shown in Figure 4. Each 

region of the square after a line split is the average of the corresponding pixels set values.  



  

Figure 4 – A beamlet decorated split of an image boundary 

The beamlet decorated quad tree also provides a piece-wise constant approximation of the image 

but the variety of shapes of the constant regions is much larger and more flexible which makes it 

possible to achieve much better approximation of the image using much fewer   

segments. Figure 5 show a comparison between the standard quad tree algorithm and the beamlet 

decorated one when applied to a simple binary image consisting of a single edge. 

 

  

Figure 5 - comparison between the standard quad tree algorithm and the beamlet 
decorated one  
 
If carried out explicitly, the operation of comparing all possible linear splits and choosing the best 
one should take  )( 4no  operations for an n by n image  and make our algorithm impractical for 
even moderately large images. We have developed an implicit evaluation of the splits by using 
FFT's and smart updates between similar splits and by doing so we were able to reduce the 
computational time to )(log 2nno ⋅ only. 
 

2. The method 
Our segmentation method consist of 2 main phases, the split phase and the merge phase. 

2.1 The split phase 
The split phase consists of the following steps 



1. Finding the optimal split for  each one of the dyadic squares in the image all the way to 
the finest scale using  a simple least squares criteria for the choices of splits described 
below. 

2. At this step we find the best beamlet decorated quad tree approximation of the image by 
folding the tree nodes up every time were a penalized residual sum of squares measure 
such as BIC below can be improved. Each time for a give square it has to be decided 
whether leave the current optimal split or to fold the block up in the tree. 
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Equation 1 – BIC and RSS where N is the total number of pixel in an image and K is the number 

of blocks. 

The output at the end of the split phase is a beamlet decorated quad tree approximation of the 

image like in Figure 6 
  

  

  

  
Figure 6 – The original Lenna image on the left and its corresponding beamlet decorated 
quad tree on the right.  
 

2.2 The merging phase 
The goal in the merging phase is merging neighbor blocks so the over all statistic measure for the 
approximation quality (BIC for example) will be improved at each stage. Of course that it is 
impractical to find the optimal split of the entire image since it's an NP hard problem, instead we 
apply a greedy approach that optimizes locally at every step until it is impossible to improve the 
statistical criteria by merging a pair from the current block set. 



Figure 7 illustrates a situation were it was found optimal to merge blocks M1, M4 and M5 at the 
merging phase, such a merge was impossible in the splitting phase since the blocks belong to 
different dyadic squares. 

  

Figure 7 – The merging phase enable to merge blocks that couldn't be merged in the 
previous phase of the algorithm due to the quad tree structure. 
Figure 8 shows the results of our algorithm when applied to an agricultural region image 

  

  

Figure 8 – Example of segmentation of a mono-spectral agricultural region image  



2.3 Generalization to multi-spectral images 

The chosen statistical criteria,  for comparison between different approximation of an image in 

our previous examples was applied to the specific pixel values, however, it is straight forward to 

generalize it to the multi-spectral case were the residual sum of squares is computed separately 

for every spectral channel and them summed up and penalized by the total number of blocks 

using an adjustment parameter as shown in equation 2 were f is a monotonous non-decreasing 

function. 
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The adjustment parameter alpha is used to determine the trade of between approximation error 

and approximation complexity. 
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Figure 9 – Segmentation of a multi-spectral agricultural region image. 
  



2.4 Comparison with the Lark algorithm  

The one of the most widely used algorithm for segmentation of hyper spectral images is the 

Lark Algorithm [Lark and Stafford 98].  In Figure 10 we show a comparison between the 

Lark algorithm and our new proposed segmentation method for a simple multi-spectral image 

with very low SNR. It can be shown that the Lark algorithm failed in the segmentation were 

our method revealed the underlying segments. We were able to get reasonable results using 

Lark only when the level of noise was much lower. 

 

תמונה מקורית
–תמונה עם תוספת רעש 

10סטיית תקן ,  נורמלי

BeamletLark    -סגמנטים8  - חלוקה ל Lark    -סגמנטים2  - חלוקה ל 

תמונה מקורית
–תמונה עם תוספת רעש 

10סטיית תקן ,  נורמלי

BeamletLark    -סגמנטים8  - חלוקה ל Lark    -סגמנטים2  - חלוקה ל 

  

Figure 10 – Comparison between Lark and Beamlets  

 

3. Summary and Conclusions 

We have introduced a new algorithm for segmentation of multi-spectral images.our method is 

based on a multi-scale geometric approach combined with highly efficient computational 

methods that is capable to approximate well a variety of shapes and scales in an image with a  We 



have compared our method to the Lark algorithm and found that our method can handle much 

more efficiently images with very low SNR.  
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